
Ounce of Rust Project Manual
Rev. B

James Richey

Nov 27, 2019

CONTENTS

1 Introduction 1
1.1 Purpose of this Manual . 1
1.2 Scope of the Project . 1
1.3 Overview of this Manual . 1

2 Overview 3
2.1 Objectives of the Project . 3
2.2 Current System . 3
2.3 Proposed System . 4
2.4 Interactions with Other Systems . 6
2.5 User Roles and Responsibilities . 6

3 Requirements 9
3.1 Rules of Tic Tac Toe . 9
3.2 User Stories . 10

4 Design 15
4.1 Public API . 15
4.2 Documentation . 23
4.3 Distribution . 24
4.4 Artificial Intelligence Algorithms . 25
4.5 Continuous Integration . 27
4.6 Benchmarking . 28

5 Glossary 29

Bibliography 31

Index 33

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 Purpose of this Manual

This is the manual for the Ounce of Rust project. This manual describes in detail the objectives, requirements, and de-
sign considerations of the project providing a central location for this information. This is invaluable for understanding
the project’s scope, planning the project’s milestones, and creating the project’s deliverables.

Anyone who is involved with this project is encouraged to read this manual and keep a copy handy while they are
working on the project.

1.2 Scope of the Project

The main deliverable of the Ounce of Rust project is a Rust library that provides common Tic Tac Toe logic that can
be used by other Rust applications. While there are existing libraries that provide similar functionality, this project
provides an opportunity to gain experience with Rust, its ecosystem, and general software development practices.

1.3 Overview of this Manual

There are three main parts to this manual.1 The Overview chapter provides a general overview of the problems this
project is intended to address and how the project addresses these problems. The Requirements chapter specifies the
requirements of the project. The Design chapter describes how the project’s deliverables are designed to fulfill the
requirements.

Additionally, the Glossary defines terms that are used throughout this manual.

1 The structure of this manual is influenced by [Berezin-1999].

1

Chapter 1. Introduction

2 Ounce of Rust Project Manual, Rev. B

CHAPTER

TWO

OVERVIEW

The overview chapter provides a high level summary of the project.

2.1 Objectives of the Project

The Ounce of Rust project intends to accomplish several objectives. This section describes these objectives.

2.1.1 Create Reusable Library to Speed Development of Tic Tac Toe Games

The result of this project is a reusable library that provides a core set of functionality that speeds development of future
Tic Tac Toe games. Core functionality includes game state management and artificial intelligence algorithms. The
user interface for Tic Tac Toe games is outside the objectives of this project.

2.1.2 Make the Library Open Source and Widely Available

The resulting library is released under a permissive open source license and made widely available. This includes
placing the code on a public repository such as https://github.com/ and in Rust’s package registry, https://crates.io/.

2.1.3 Learn About Rust

Rust is a modern statically typed systems programming language that has a focus on safety. Its mix of high level
concepts, ability to avoid entire categories of bugs, and focus on correctness has made Rust an increasingly popular
language.

Even though Rust is unlikely to replace C and C++ any time soon, Rust’s concepts, such as traits, error handling, and
memory management systems are worth learning to help expand ones general programming knowledge.2

2.2 Current System

Tic Tac Toe is a game where two players, X and O, take turns placing their mark in a gird. The first player to get three
marks in a row, column, or diagonal wins the game. The game can also end in a draw, known as a “cat’s game”. An
example of a Tic Tac Toe game is shown in Figure 2.1.

2 The Rust official documentation is likely to be helpful for meeting this objective. For details see [Rust-Docs].

3

https://github.com/
https://crates.io/

Chapter 2. Overview

Figure 2.1: An example game of Tic Tac Toe where player X is victorious.

2.2.1 Pencil and Paper

Traditionally Tic Tac Toe is played by two players using pencil and paper. This is a quick and convenient way to play
with a friend. However, this does not allow for single player games. For people stuck on an airplane this can lead to
extreme boredom!

2.2.2 Computer Games

Tic Tac Toe computer games allow for single player versions of the game. There are many versions of the game created
over the years. Figure 2.2 shows a screen shot from one of the classic Tic Tac Toe games.

These games can be developed as stand alone applications or can be created with the help of supporting libraries.

2.2.3 Supporting Libraries

To support the creation of Tic Tac Toe games many libraries have been developed to provide common functional-
ity. Searching Rust’s package registry, https://crates.io/, reveals several such libraries including ultimate-ttt,
zero_sum, and minimax.

With the wide variety of libraries available, for both Rust and other languages, there is likely one that meets the needs
of Tic Tac Toe application developers. However, due to the Learn About Rust objective, it is worth going through the
effort to create another Tic Tac Toe library.

2.3 Proposed System

This project creates a Rust library that application developers can use to create Tic Tac Toe games. The library contains
common Tic Tac Toe functionality such as game state management and single player support. The library exposes this
functionality through a well defined and documented API. The library is open source and is available in Rust’s package
registry https://crates.io/.

By using this library, application developers can focus on making flashy graphics or other unique Tic Tac Toe experi-
ences without worrying about the underlying game logic or artificial intelligence algorithms.

2.3.1 Game State and Board Management

A common task of Tic Tac Toe games is managing the state of the game. This includes knowing which player takes
the next turn, ensuring players cannot mark a previously marked square, and checking for victory conditions.

3 https://www.imaginaryphase.com/ttt.html

4 Ounce of Rust Project Manual, Rev. B

https://crates.io/
https://crates.io/

2.3. Proposed System

Figure 2.2: Screen shot of Tic Tac Toe3 developed by James Richey.

Ounce of Rust Project Manual, Rev. B 5

https://www.imaginaryphase.com/ttt.html

Chapter 2. Overview

2.3.2 AI Players

The library allows single player Tic Tac Toe games to be created by providing AI players. These players use artificial
intelligence algorithms that pick a square to place the AI player’s mark. The application developer has control over
how difficult it is win over the AI player.

2.3.3 Available on crates.io

The library is available on https://crates.io/, the source code released under a permissive open source license, and the
API documentation is hosted on a publicly accessible website.

2.3.4 Deliverables

The project deliverables are:

• open_ttt_lib package.4

• API documentation.5

• Source code available on a public repository with a tagged release.

2.4 Interactions with Other Systems

The Tic Tac Toe library is intended to be used in other user facing applications. This includes, but is not limited to,
stand alone graphical applications, command line applications, or even as a mini-game in a larger video game. The
diagram in Figure 2.3 shows how the library is used by other systems.

Figure 2.3: Diagram showing how the library is used by other applications.

The other applications link directly to open_ttt_lib. The library does not provide any ways of remote access, e.g.
via a network interface, and it does not save any state the computer’s persistent storage.

2.5 User Roles and Responsibilities

This section describes the users of the Tic Tac Toe library.

4 Future projects built around open_ttt_lib may use open_ttt as part of their package name.
5 Popular places to host Rust API documentation include https://docs.rs/ and https://pages.github.com/.

6 Ounce of Rust Project Manual, Rev. B

https://crates.io/
https://docs.rs/
https://pages.github.com/

2.5. User Roles and Responsibilities

2.5.1 Rust Application Developer

The Rust application developer uses the library to create awesome Tic Tac Toe games.

Responsibilities

• Connect the library to a Tic Tac Toe user interface.

• Read the library’s documentation to determine how to use the library.

• Debug the application when it does not run as expected.

2.5.2 Tic Tac Toe Player

The Tic Tac Toe player is an indirect user of the library. They use the application created by the Rust application
developer to play an exciting game of Tic Tac Toe.

Responsibilities

• Challenge a friend to a game of Tic Tac Toe.

• Attempt to win against the computer.

Ounce of Rust Project Manual, Rev. B 7

Chapter 2. Overview

8 Ounce of Rust Project Manual, Rev. B

CHAPTER

THREE

REQUIREMENTS

This chapter describes the detailed requirements of the Tic Tac Toe library. This includes the rules for playing Tic Tac
Toe and user stories describing how the library is used.

3.1 Rules of Tic Tac Toe

The Tic Tac Toe library provides functionality for managing the game and ensuring players only make valid moves.
This requires the library’s logic to know the rules of Tic Tac Toe. The rules for Tic Tac Toe are as follows:

1. Play occurs on a board composed of a 3 x 3 grid of squares. The board starts empty with no marks.

2. The first player places their mark in one of the grid’s squares. Traditionally, the mark is the letter X.

3. The second player places their mark in one of the grid’s empty squares. A square that already contains a mark
cannot be updated or altered. Traditionally, the second player uses the letter O as their mark.

4. Turns alternate between the players until the game is over.

5. The first player to get three of their marks in a line wins the game. That is: they have three marks in a row,
column, or diagonally. Examples of winning games are shown in Figure 3.1.

Figure 3.1: Examples of winning Tic Tac Toe games showing player X winning by getting three marks a row, diagonal,
and column. The red line shows the squares that contributed to the win. Notice that it is possible to get multiple sets
of three marks in a row.

6. The game ends in a draw, known as a cat’s game, if no more empty squares remain and a player has failed to get
three marks in a line. Examples of cat’s games are shown in Figure 3.2.

Figure 3.2: Examples of Tic Tac Toe games ending in a cat’s game. No player managed to get three marks in a line.

9

Chapter 3. Requirements

3.2 User Stories

User stories are informal descriptions of the software’s features. These stories are written from the perspective of the
users roles described in User Roles and Responsibilities. The general format is:

As a <user> I want <goal/desire> so that <benefit>.

This section contains the user stories identified for this project.

3.2.1 Game State Management

As a Rust application developer,
I want the library to contain functionality for managing the state of the game,
so I can focus on creating engaging user experiences.

Acceptance Criteria

• The library exposes APIs for getting the current state and updating the state of the game. This includes func-
tionality for checking the victory condition and determining the winner of the game, if any.

Notes

The design details of the APIs are outside the scope of this requirements chapter.

3.2.2 Know Squares that Contributed to Player’s Victory

As a Rust application developer,
I want to know what squares contributed to the player’s victory,
so I can draw a line through them or mark them in a special color.

Acceptance Criteria

• When a player has won the game there is a way to obtain the board’s squares that contributed to the victory.

• If the player won by getting multiple sets of squares as shown in Figure 3.1 then all square that contributed to
the win are available.

3.2.3 Stable Library API

As a Rust application developer,
I want the library to have a stable API,
so that my application does not unexpectedly break if I use a different version of the library.

Acceptance Criteria

• The library uses semantic versioning to clearly communicate when there are API changes.7

7 See https://semver.org/ for details on semantic versioning.

10 Ounce of Rust Project Manual, Rev. B

https://semver.org/

3.2. User Stories

• There are integration tests that help library developers detect if the library’s API changes.

3.2.4 AI Player

As a Tic Tac Toe player,
I want to play against the computer,
as I do not always have a friend to play with.

Acceptance Criteria

• The library provides an AI player that Rust application developers can incorporate into their applications.

3.2.5 AI Difficulty Settings

As a Tic Tac Toe player,
I want different AI difficulty settings,
so I can play a challenging yet winnable game of Tic Tac Toe.

Acceptance Criteria

• The difficulty for AI players can be configured by the Rust application developer.

Notes

The difficulty can be thought of as a probability of how likely the AI will make a mistake.

3.2.6 Players Take Turns Having the First Move

As a Tic Tac Toe player,
I want to have the first move on the next game if I did not have the first move this game,
so I have a better chance of winning the next game.

Acceptance Criteria

• The game logic ensures the starting player alternates between games.

Notes

The player who takes the first move has more wining possibilities than the second player.8

8 The player with the first move has about double the number of winning possibilities. For details see Wikipedia’s Tic-tac-toe page9.
9 https://en.wikipedia.org/wiki/Tic-tac-toe

Ounce of Rust Project Manual, Rev. B 11

https://en.wikipedia.org/wiki/Tic-tac-toe

Chapter 3. Requirements

3.2.7 Maximum AI Update Time

As a Rust application developer,
I want the AI to block for less than one frame when picking a square,
so it does not block my rendering thread making my animations choppy.

Acceptance Criteria

• There is a benchmark that measures the worst case time the AI blocks while picking a square.

• How to run the benchmark is documented so developers can quickly evaluate this library to see if it meets their
needs.

Notes

Frame times can vary greatly depending on platform and application. For example, an update time of one second
might be just fine for a casual Tic Tac Toe game. However, a Tick Tac Toe mini-game in a modern FPS is expected
to take just a fraction of the 1/144 second frame time. Therefore, providing the tools to allow the Rust application
developer to see if this library meets their needs is sufficient to fulfill this requirement.

3.2.8 Getting Started Example

As a Rust application developer,
I want an example of getting started with the library,
so I can quickly start integrating the library into my application.

Acceptance Criteria

• There is a runnable example of using the library.

• The example is in a prominent location such as library’s documentation home page.

3.2.9 Detailed Library Documentation

As a Rust application developer,
I want detailed and thorough library documentation,
so I can determine how to use the library for my specific needs.

Acceptance Criteria

• All public modules and their members are documented using Rust’s documentation comments.

• The documentation contains the typical sections such as Panics and Errors.

• The documentation is accessible from the internet, such as being hosted on https://docs.rs.

12 Ounce of Rust Project Manual, Rev. B

https://docs.rs

3.2. User Stories

3.2.10 Idiomatic Rust APIs

As a Rust application developer,
I want the library to provide idiomatic Rust APIs,
so the library works in natural and familiar way.

Acceptance Criteria

• The Rust API Guidelines are consulted when designing the library’s API.10

• An experienced Rust programmer code reviews and signs off on the library’s API.

Notes

API design can be subjective. However, providing an idiomatic Rust API is important to fulfilling the Learn About
Rust objective. Therefore, obtaining the opinions of an experienced Rust programmer helps ensure the resulting design
is reasonable and idiomatic.

3.2.11 Cross Platform Support

As a Rust application developer,
I want the library to work on a variety of platforms,
so I can make Tic Tac Toe games for a wider use base.

Acceptance Criteria

• The library is tested and verified on two different platforms such as Windows 10 and Linux.

Notes

The use of platform specific code is minimized, however, the number of platforms the library is tested on may be
limited due to resource constraints.

3.2.12 Available on crates.io

As a Rust application developer,
I want the library to be on Rust’s package registry, https://crates.io/,
so that I can easily incorporate it into my Rust based application with Cargo.

Acceptance Criteria

• The library is hosted on crates.io.

• The library can be obtained by simply specifying it as a dependency in a package’s Cargo.toml.

10 See the [Rust-API-Guidelines] for details.

Ounce of Rust Project Manual, Rev. B 13

https://crates.io/

Chapter 3. Requirements

3.2.13 Source Available on GitHub

As a Rust application developer,
I want the library’s source code to be available on GitHub6

so I can view the source code to get a better understanding of how the library works.

Acceptance Criteria

• The library’s source code is hosted on a public GitHub repository.

• The library’s tags match the releases on crates.io.

3.2.14 Permissive License

As a Rust application developer,
I want the library to be licensed under a permissive open source license,
so that I can incorporate the library into my application without worrying about legal issues.

Acceptance Criteria

• The library is released under a permissive open source license. The MIT license fulfills this requirement.

6 https://github.com/

14 Ounce of Rust Project Manual, Rev. B

https://github.com/

CHAPTER

FOUR

DESIGN

This chapter provides design details for the Tic Tac Toe library. This includes user facing areas such as the library’s
API and internal algorithms.

4.1 Public API

This section describes the public API of the library. The provided types and functions are used by other applications
to create Tic Tac Toe games. The legend shown in Figure 4.1 is used for the type diagrams in this section.

Figure 4.1: Legend used for the type diagrams in this section.

An overview of the major public types is shown in Figure 4.2.

The library contains a single public module that holds the public types. The naming conventions used in this library
follow those described in the Rust API Guidelines11 per the Idiomatic Rust APIs user story.

Each of the major and supporting types are described below.

4.1.1 Game Management

Game management is handled by the Game structure. This structure is one of the central types provided by the library.
It contains the state machine logic, holds the underlying game board, and enforces the rules of Tic Tac Toe. Figure 4.3
shows the Game structure and other types related to management of Tic Tac Toe games.

A state machine is used determine which player has the next move or when the game is over. The state diagram is
shown in Figure 4.4.

When a new game starts either player X or player O takes the first turn. The players alternate making their moves until
one of the end game conditions is encountered. The player that did not have the first turn last game takes the first turn
next game.

11 See the [Rust-API-Guidelines] for details.

15

Chapter 4. Design

Figure 4.2: Major public modules, structures, and other types. Note: the module contains additional supporting types
that are not shown here.

Figure 4.3: The Game structure contains a State and a Board.

16 Ounce of Rust Project Manual, Rev. B

4.1. Public API

Figure 4.4: State diagram of a Tic Tac Toe game.

Ounce of Rust Project Manual, Rev. B 17

Chapter 4. Design

Struct Game

Members of the Game structure are as follows:

new() Creates a new Tic Tac Toe game structure. Note: use start_next_game() for playing consecutive games
to ensure each player gets to start the game.

board() Gets the board associated with the game.

state() Gets the current state of the game.

free_positions() Gets an iterator over the free positions that do not have an owner and thus can be provided to
do_move(). When the game is over there are no free positions.

can_move() Indicates if the square at the indicated position can be marked as owned. That is, if can_move()
returns true for a given position then do_move() is guaranteed to be successful.

do_move() Marks the indicated square as being owned by the current player. The state of the game is updated as
a side effect of do_move() and the new state of the game is returned. An error is returned if the position is
already owned or if the game is over.

start_next_game() Starts the next game by resetting the state machine ensuring the player who went second last game
goes first next game. This can be called at any time even if the current game is not over. The new state of the
game is returned.

Trait Implementations

• Clone12

Related Requirements

• Rules of Tic Tac Toe

• Game State Management

• Players Take Turns Having the First Move

Enum Sate

The game state enumeration contains a variant for each possible game state described in Figure 4.4 along with some
additional helper methods.

PlayerXMove Player X’s turn to mark a free position.

PlayerOMove Player O’s turn to mark a free position.

PlayerXWin[HashSet<position>] Player X has won the game. The set of positions that contributed to the win are
provided as the enum value.

PlayerOWin[HashSet<position>] Player O has won the game. The set of positions that contributed to the win are
provided as the enum value.

CatsGame The game has ended in a draw where there are no winners.

12 Rust’s clone and copy traits both serve to duplicate an object but each goes about duplication in a different manner. Copy performs an operation
similar to memcpy where it just copies the bits of the object. Alternately, Clone explicitly duplicates the object giving the programmer control over
what parts are cloned. For details see the discussion in Trait std::clone::Clone13.

13 https://doc.rust-lang.org/std/clone/trait.Clone.html

18 Ounce of Rust Project Manual, Rev. B

https://doc.rust-lang.org/std/clone/trait.Clone.html

4.1. Public API

is_game_over() Indicates if the state represents one of the game over states. That is, if either player has won or it is a
cat’s game then true is returned; otherwise, false is returned.

The set of positions provided to PlayerXWin and PlayerOWin contain all the positions that contributed to the
victory. Usually, there will be three items in this set representing a row, column, or diagonal. However, there are some
situations as Figure 3.1 where more than three squares can contribute to a victory.

Trait Implementations

• Clone

• Debug

• Eq

Related Requirements

• Know Squares that Contributed to Player’s Victory

Struct Free Positions

An iterator over free positions that do not have an owner.14

next() Gets the next free position in the board, or None once all the free positions have been returned.

Trait Implementations

• Iterator

Struct Invalid Move Error

Used to indicate moving to the indicated position is invalid. This could be due to the position being owned or the game
being over.

Trait Implementations

• Error

4.1.2 Board Data

The board structure models a Tic Tac Toe game board. It maps the individual positions to owners of the position. It
provides functions to access and iterate over each position. The board and square structures along with supporting
types are shown in Figure 4.5.

14 Rust’s standard library documentation states “Iterators are heavily used in idiomatic Rust code, so it’s worth becoming familiar with them.”
For details see [Rust-Crate-std].

Ounce of Rust Project Manual, Rev. B 19

Chapter 4. Design

Figure 4.5: The Board structure and supporting types.

Struct Board

Data structure representing the Tic Tac Toe board. Provides multiple ways to access individual squares.

new() Constructs a new board based on the given size. Panics if the size is less than one row and one column.

size() Gets the size of board, that is the number of rows and columns.

get() Gets the owner of the provided position. None is returned if requested position is outside the size of the board.

get_mut() Gets a mutable reference ot the owner at the indicated position. This allows the owner of the position to
be changed. None is returned if requested position is outside the size of the board.

iter() Gets an iterator that iterates over all the squares in the board.

The board structure also implements the Display trait. This provides a formatted output of the board and is suitable for
use in simple console applications or debugging purposes. An example of the boards display is shown in Listing 4.1.

Listing 4.1: Example board display output.

+---+---+---+
| X | O | O |
+---+---+---+
| O | X | |
+---+---+---+
| X | | X |
+---+---+---+

Trait Implementations

• Display

• Clone

20 Ounce of Rust Project Manual, Rev. B

4.1. Public API

Struct Iter

Implements the iterator trait for iterating over all the positions and owner pairs of the board.

next() Gets a tuple containing the next position and owner of that position. None is returned if the end of the board
has been reached.

Struct Size

The size structure represents the size of the board in number of rows and columns.

rows The number of rows in the board.

columns The number of column in the board.

Trait Implementations

• Debug

• Copy

• Clone

• From<(usize, usize)>

• Eq

• Hash

Struct Position

The position structure represents a specific board position denoted by row and column.

row The row associated with the position.

column The column associated with the position.

Trait Implementations

• Debug

• Copy

• Clone

• From<(usize, usize)>

• Eq

• Hash

Enum Owner

The owner enumeration indicates which player owns a position, if any.

PlayerX Player X owns the position.

PlayerO Player O owns the position.

Ounce of Rust Project Manual, Rev. B 21

Chapter 4. Design

None No player owns the position.

Trait Implementations

• Default

• Debug

• Copy

• Clone

• Eq

• Hash

4.1.3 AI Opponent

The AI opponent structure represents a computer controlled AI player. The AI opponent structure is shown in Figure
4.6.

Figure 4.6: AI Opponent structure.

See Artificial Intelligence Algorithms for details on how the AI selects a position.

Member Details

new() Constructs a new AI opponent. The mistake probability indicates how likely the AI will fail to consider various
situations. A value of 0.0 makes the AI play a perfect game. A value of 1.0 causes the AI to always pick a
random position. Values less than 0.0 are set to 0.0 and values greater than 1.0 are set to 1.0.

get_move() Gets the position the AI opponent wishes to move based on the provided game. None is returned if the
game is over. The AI opponent never tries to select an invalid position, that is a position that is not free.

Trait Implementations

• Debug

Related Requirements

• AI Player

• AI Difficulty Settings

22 Ounce of Rust Project Manual, Rev. B

4.2. Documentation

4.2 Documentation

The Tic Tac Toe library provides API documentation to help developers use the functionality provided by the library.
This section describes how the documentation is put together and published.

4.2.1 Documentation Comments

Rust supports storing the library’s documentation along side the source code using documentation comments.15Each
public item provided by the library has corresponding documentation that describes why the item should be used.

Common sections include examples, panics, and errors. In particular, Rust encourages every public type to have
a corresponding example. The example for the library’s top level module shows a getting started example that is a
simple yet complete Tic Tac Toe game that uses the APIs provided by the library. Additionally, the example code is
exercised as part of the library’s tests which help developers detect if a public API has changed.

The Continuous Integration system is configured to ensure all public items are documented. Any public item that is
not documented causes a build error to be reported.

Related Requirements

• Stable Library API

• Detailed Library Documentation

• Getting Started Example

4.2.2 Change Log

The library’s source code repository includes a CHANGELOG.md file that describes user visible changes to the library.
For each release a new entry is added to the change log that describes changes users might care about.18 The change
log also mentions how the library follows semantic versioning.19

Related Requirements

• Stable Library API

4.2.3 Hosting

The packages’s Cargo.toml uses the default documentation value which means when the package is uploaded
to crates.io, https://docs.rs automatically builds and hosts the library’s documentation.

The library’s source code repository README.md file contains a link to this documentation so developers can review
the documentation without needing to download and build the documentation themselves.

15 See the Making Useful Documentation Comments16 section in the Rust Book which is part of [Rust-Docs]. Additionally, there is a Documen-
tation17 section in the [Rust-API-Guidelines].

16 https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
17 https://rust-lang-nursery.github.io/api-guidelines/documentation.html
18 See https://keepachangelog.com/ for the format of the CHANGELOG.md file and additional details / motivation for keeping a change log.
19 Rust RFC 1105 API Evolution20 describes semantic versioning as understood by Rust.
20 https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

Ounce of Rust Project Manual, Rev. B 23

https://docs.rs
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://rust-lang-nursery.github.io/api-guidelines/documentation.html
https://rust-lang-nursery.github.io/api-guidelines/documentation.html
https://keepachangelog.com/
https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

Chapter 4. Design

Related Requirements

• Detailed Library Documentation

4.3 Distribution

This section describes how the Tic Tac Toe library is shared with others.

4.3.1 MIT License

The library’s code is released under the MIT license.22The MIT license is simple and allows for use with open source,
commercial, or private projects.

The library’s source code repository contains a LICENSE.txt file that includes the text of the MIT license. Addi-
tionally, the README.md file mentions the this license.

Related Requirements

• Permissive License

4.3.2 Publishing to crates.io

Crates.io is the Rust community’s package registry. Uploading the Tic Tac Toe package to cargo.io allows others to
easily obtain the library using the Rust package manager, Cargo.

See Publishing on crates.io21 for a step by step guide on how to publish a package. This includes a list of mandatory
metadata that Cargo.toml must contain and how to upload the package.

The library’s source code repository README.md file contains a link to the crates.io for the library.

Related Requirements

• Available on crates.io

4.3.3 GitHub Repository

The library’s source code is available on GitHub so others can clone and modify the code as they wish. The repository
is named after the library. Additionally, the repository value in the packages’s Cargo.toml file points to this
repository.

GitHub also takes care of the library’s bug tracker.

Related Requirements

• Source Available on GitHub
22 For details on the MIT license see Choose an open source license - MIT License23.
23 https://choosealicense.com/licenses/mit/
21 https://doc.rust-lang.org/cargo/reference/publishing.html

24 Ounce of Rust Project Manual, Rev. B

https://doc.rust-lang.org/cargo/reference/publishing.html
https://choosealicense.com/licenses/mit/

4.4. Artificial Intelligence Algorithms

4.4 Artificial Intelligence Algorithms

The AI algorithms are responsible for picking a square to place the AI player’s mark.24 It does this by doing a depth
first search for all possible game outcomes based on the current state of the game board. An example is shown in
Figure 4.7.

Figure 4.7: Example dept first search algorithm looking for possible Tic Tac Toe game outcomes. The AI player is
playing as X and the opponent is playing as O. The possible outcomes of selecting a particular square are marked with
W for win, L for loss, and C for cat’s game.

The algorithm selects a free position then traverses the tree looking for one of the end game conditions: win, loss,
or cat’s game. Once the end of the game is found, the result is propagated up the tree. The algorithm assumes the
opponent will play a perfect game. That is, if a specific position leads for both a win for the opponent (a loss for the
AI player) and a cat’s game, the algorithm marks that position as a loss.

Once all possibilities have been searched, the algorithm picks the position that lead to the best outcome. Winning
positions are picked over cat’s games, and cat’s games are picked over losses. Additionally, if there are multiple
positions with the same outcome, one is picked at random to ensure the game appears more natural to human players.25

24 The name of the AI player is Robbert, or Bob for short.
25 One of the challenges of creating AI for video games is the AI needs to be fun. An AI that picked the same square every time would not be

fun! See [Buckland-2004] for a discussion on making game AI fun.

Ounce of Rust Project Manual, Rev. B 25

Chapter 4. Design

The depth search algorithm can see to the end of the game, thus it cannot be beat. The best possible outcome is a
cat’s game. Therefore, to give human players a chance to win, the algorithm sometimes fails to consider one of the
outcomes. The probability of making a mistake is configurable.

4.4.1 AI Logic Details

There are two main parts to the AI’s logic. A high level part examines the state of the game and picks the best move
and a low level part that evaluates the outcome of picking a specific position. The best way to examine this logic is to
look at some pseudo code.

The pseudo code in Listing 4.2 examines the overall state of the game and returns the best position for the AI to place
its mark.

Listing 4.2: Pseudo code for examining game state and picking the best
move.

def ai_move(game, mistake_probability):
Determine which player the AI is playing as.
ai_player = get_ai_player(game.state())

For each free square, evaluate the consequences of using
that square. The outcome for each position and the position
is recorded.
outcomes = []
for position in game.free_positions():

outcomes = evaluate_position(
position, game, ai_player, mistake_probability)

outcomes.push((outcome, position))

Return the best position based on the outcomes.
return best_position(outcomes)

There are several notable items in this pseudo code. The get_ai_player() function indicates which player the
AI is playing as, X or O, based on the current state of the game.26 It panics if the game is over. The resulting variant
is passed to the lower level evaluate_game() function.

The best_position() function takes the collection of outcome and position tuples and picks a position with the
best outcome. The ordering of outcomes from best to worst are: Win, CatsGame, Unknown, Loss. A cats game
is considered better than unknown as the AI would rather have the game end in a draw than risk a loss. If there are
multiple positions with the same outcome, one of the positions is picked at random.

The evaluate_position() function is responsible for evaluate a specific position. Listing 4.3 shows the pseudo
for this function.

Listing 4.3: Pseudo code for evaluating a specific position.

def evaluate_position(position, game, ai_player, mistake_probability):
Check to see if the AI should make a mistake given the
mistake probability. If so, don't consider this position.
if should_make_mistake(mistake_probability):

return Outcome.Unknown

Clone the game so this function can try out the move without
modifying the original game.

(continues on next page)

26 Rust enums support methods, so get_ai_player() could actually be implemented as fn new(state: GameState) ->
AIPlayer for the AIPlayer enum.

26 Ounce of Rust Project Manual, Rev. B

4.5. Continuous Integration

(continued from previous page)

game = game.clone()
game.do_move(position)

Check to see if the game is over. If so, return the
outcome of the game from the AI's perspective,
e.g. win, loss, or cat's game.
if game.state().is_game_over():

return game_state_to_ai_outcome(game.state(), ai_player)

The game is not over, to evaluate each of the remaining
free squares. Note: the game automatically takes care of
switching between player X's and player O's turn.
outcomes = []
for position in game.free_positions():

outcome = evaluate_position(
position, game, ai_player, mistake_probability)

outcomes.push(outcome)

The AI assumes the other player plays a perfect game,
so return the worst outcome that was found.
return worst_outcome(outcomes)

The should_make_mistake() function takes the mistake probability and returns true if the algorithm should
skip examining this branch of the tree. The Unknown outcome is used for parts of the tree that are skipped.

The game_state_to_ai_outcome() function is responsible for converting one of the game over states into an
AI outcome. That is: one of Win, Loss, or CatsGame. It uses the ai_player to know what player the AI is
playing as.

The worst_outcome() function takes the outcomes from all the positions and returns the worst possible one for
the AI player. The ordering of outcomes returned are: Loss, CatsGame, Win, Unknown. Unknown is returned
only if other information was not obtained about the position.

Note: The ordering of outcomes used by worst_outcome() is different than different than best_position().

Related Requirements

• AI Player

• AI Difficulty Settings

4.5 Continuous Integration

The Tic Tac Toe library uses the Travis CI27 continuous integration system to build and test every commit on a variety
of platforms.29This ensures potential problems are found as soon as possible.

The continuous integration system also enforces additional rules such as requiring the project have fully documented
public APIs and contain no unused code.

27 https://travis-ci.com/
29 See Testing Your Project on Multiple Operating Systems30.
30 https://docs.travis-ci.com/user/multi-os/

Ounce of Rust Project Manual, Rev. B 27

https://travis-ci.com/
https://docs.travis-ci.com/user/multi-os/

Chapter 4. Design

A .travis.yml included in the library’s source code repository tells Travis CI how to build and test the code. The
Travis CI Tutorial28 provides a starting point on how to create the .travis.yml file.

The library’s source code repository README.md file contains a link to the Travis CI build page and includes a badge
that indicates if the build is passing or failing.

Related Requirements

• Stable Library API

• Cross Platform Support

4.6 Benchmarking

The library provides a benchmark of the worst case AI update time allowing users of the library to evaluate if the
library fits in with their performance goals. Cargo contains built in benchmark support: any tests that have the bench
attribute are exercised by running cargo bench.31Listing 4.4 shows an example of benchmarking the worst case
AI move.

Listing 4.4: Example worst case AI move benchmark.

#[bench]
fn worst_case_ai_move_benchmark(b: &mut Bencher) {

let game = Game::new();
let mistake_probability = 0.0;
b.iter(|| AIMove::new(game, mistake_probability));

}

The worst case update time is for a new game and a zero percent mistake probability. Under this situation the Artificial
Intelligence Algorithms have to evaluate the entire problem space.

The library’s source code repository README.md file contains instructions on how to run the benchmarks.

Related Requirements

• Maximum AI Update Time

28 https://docs.travis-ci.com/user/tutorial/
31 See Benchmark tests32 for details.
32 https://doc.rust-lang.org/1.7.0/book/benchmark-tests.html

28 Ounce of Rust Project Manual, Rev. B

https://docs.travis-ci.com/user/tutorial/
https://doc.rust-lang.org/1.7.0/book/benchmark-tests.html

CHAPTER

FIVE

GLOSSARY

API Acronym for application programming interface.

application programming interface The interface provided by a library for use by a software application. This is
composed by the public functions and types provided by the library.

Cargo Cargo is Rust’s build system and package manager.

Cargo.toml The configuration file for Cargo. This allows developers to specify their projects metadata and depen-
dencies.

cat’s game Term used when a game of Tic Tac Toe ends in a draw where there is no winner.

crate Rust’s term for an application binary or library.

idiomatic coding Idiomatic coding is using familiar conventions, techniques, and practices of a particular program-
ming language.

library A collection of pre-written software functionality that can be used by other applications.

Ounce of Rust The code name for the project to make a Rust based Tic Tac Toe library. The etymology comes from
how a Tic Tac Toe board is similar to a pound sign (#) but this project for making just a part of full game: an
ounce is part of a pound.

package An organized collection of software components. In Rust, a package is a collection of crates.

Rust programming language Rust is a systems programming language with a focus on safety and speed. Website:
https://www.rust-lang.org/

semantic versioning A set of rules governing how API version numbers are managed and updated with the goal of
clearly communicating when incompatible changes, new features, and bug fixes made. For details see https:
//semver.org/.

29

https://www.rust-lang.org/
https://semver.org/
https://semver.org/

Chapter 5. Glossary

30 Ounce of Rust Project Manual, Rev. B

BIBLIOGRAPHY

[Berezin-1999] Tanya Berezin (1999) Writing a Software Requirements Document. Retrieved from https://eecs.ceas.
uc.edu/~cpurdy/sefall10/ReqsDoc.pdf (archived on archive.org33)

[Buckland-2004] Mat Buckland (2004) Programming Game AI by Example

[Rust-Docs] Rust Documentation. Available online at https://www.rust-lang.org/learn and on any system with Rust
installed by running rustup doc.

[Rust-Crate-std] Crate std - The Rust Standard Library. Retrieved from https://doc.rust-lang.org/std/index.html

[Rust-API-Guidelines] Rust API Guidelines. Retrieved from https://rust-lang-nursery.github.io/api-guidelines/
(source on GitHub34)

33 https://web.archive.org/web/20190922201012/https://eecs.ceas.uc.edu/~cpurdy/sefall10/ReqsDoc.pdf
34 https://github.com/rust-lang-nursery/api-guidelines

31

https://eecs.ceas.uc.edu/~cpurdy/sefall10/ReqsDoc.pdf
https://eecs.ceas.uc.edu/~cpurdy/sefall10/ReqsDoc.pdf
https://web.archive.org/web/20190922201012/https://eecs.ceas.uc.edu/~cpurdy/sefall10/ReqsDoc.pdf
https://www.rust-lang.org/learn
https://doc.rust-lang.org/std/index.html
https://rust-lang-nursery.github.io/api-guidelines/
https://github.com/rust-lang-nursery/api-guidelines

Bibliography

32 Ounce of Rust Project Manual, Rev. B

INDEX

A
AI player, 11, 24
AIOpponent struct, 22
API, 29
API, 15
application programming interface, 29
application programming interface, 15

B
benchmark, 28
Board struct, 19

C
Cargo, 29
Cargo.toml, 29
cat’s game, 29
cat’s game, 9
change log, 23
crate, 29
crates.io, 13, 24

D
depth first search, 24

F
FreePositions struct, 19

G
Game struct, 15
GitHub, 13, 24

I
idiomatic coding, 29
InvalidMoveError struct, 19
Iter struct, 20

L
library, 29

M
mistake probability, 27
MIT license, 24

O
Ounce of Rust, 29
Owner enum, 21

P
package, 29
player, 7
Position struct, 21

R
Rust application developer, 6
Rust programming language, 29

S
Sate enum, 18
semantic versioning, 29
semantic versioning, 10, 23
Size struct, 21

T
Travis CI, 27
travis.yml, 27

33

	Introduction
	Purpose of this Manual
	Scope of the Project
	Overview of this Manual

	Overview
	Objectives of the Project
	Current System
	Proposed System
	Interactions with Other Systems
	User Roles and Responsibilities

	Requirements
	Rules of Tic Tac Toe
	User Stories

	Design
	Public API
	Documentation
	Distribution
	Artificial Intelligence Algorithms
	Continuous Integration
	Benchmarking

	Glossary
	Bibliography
	Index

